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A hidden-variables versus quantum mechanics experiment 
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Departamento de Ffsica Te6rica Universidad Compluteme. 28040 Madrid, Spain 

Received 17 May 1994, in final form 29 March 1995 

Abstract. In the light of the Bell-Kochen-Specker theorem, we examine a feasible experimental 
test in order to discriminate bemeen noncontextual hidden-variables and some probabilistic 
predictions of quantum mechanics. 

1. Introduction 

The longstanding question of whether hidden-variable (HV) ‘completions’ of quantum 
mechanics (QM) are feasible has generated several ‘impossibility’ proofs. One of these, 
the Bell-KochenSpecker (BKS) theorem [1,2], states that any non-contextual HV theory 
satisfying a few reasonable assumptions is internally inconsistent. As it stands, the BKS 
theorem is a mathematical statement which does not require any real experiment in order to 
be proved or refuted. The aim of this paper is to examine the possibility of translating BKs- 
type arguments into real experiments to test the predictions of QM against some predictions 
of HV theories satisfying the same assumptions as those considered in the BKS theorem. 

The paper is structured as follows. In section 2, we specify the premises which the BKS 
theorem shows are inconsistent. In section 3, we present a theorem which states that for 
a single spin-f particle, any HV theory satisfying BKS premises makes definite predictions 
on ‘HV values’ of some physical observables. In section 4, we show that these predictions 
are inconsistent with the corresponding probabilistic predictions of QM (with a stronger 
discrepancy than in a similar argument considered by Clifton [3]), and we discuss how this 
can be translated into an experimental test in order to discriminate between QM and any HV 
theory satisfying BKS premises. 

2. .Premises in the BI(S theorem 

Consider an HV theory in which any individuaI physical system has a set of (hidden) variables 
the values of which (together with those of the measuring apparatus) determine (in some 
unspecified way) the outcome of any experiment on that individual system. Suppose these 
‘HV values’ satisfy the following premises: 

(a) Non-contextualify: The HV value of a physical observable A in an individual 
physical system does not depend on which other observables (compatible with A )  have 
simultaneously defined values in the said individual system. 

(b) Counterfactual definiteness: An individual physical system can have simultaneously 
precise HV values for two non-compatible observables, B and$, although these cannot be 
jointly measured (in the sense of making a joint preparation, or ideal measurement of the 
first kind [4]). 
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(c) Constraints on HV values suggested by QM: (cl) If the measure of a physical 
observable A in an ensemble of similarly prepared systems gives results only on a set 
of discrete real values (which, according to QM, belong to the spectrum of the associated 
Hermitian operator A), the HV value of such observable, which we shall denote by u(A),  
must be one of such values in any individual physical system of the ensemble. 

Corollary. If a quantum mechanical state is dispersion-free for an observable A (which, 
according to QM, means that it is mathematically describable by an eigenstate of 
corresponding to some eigenvalue a). any of the individual systems in the said state will 
have an Hv value for A equal to the eigenvalue, 

u(A) =a. (1) 

(c2) Any set of HV values corresponding to a set of compatible observables (in QM 
described by commuting Hermitian operators) satisfies the same relations as any possible 
outcome of measuring those observables according to QM. Namely: let [ A ,  B ,  C, . . .) be 
a set of painvise compatible observables, and let us assume that the Hermitian operators 
which represent them satisfy a certain functional identity 

f (A, 5.2.. .. .) =o. 
The outcome of a joint measurement of this set of observables on an individual system 
will be (according to QM) a set of eigenvalues of the corresponding operators [a, b ,  c,  . . .], 
satisfying the relation 

f(a, b, c,  . . .) = 0. (3) 

Assumption (c2) states that any set of HV values for these observables must verify the same 
relation 

Premises (cl), (c2), although reasonable, are far from being inevitable, even for HV 
theories with predictions that are fully compatible with those of QM. For example, in the 
Dewdney et a1 [5,6] discussion of spin-; particles, according to Bohm’s theory [7], the 
three spin components of an individual particle have simultaneously well-defined continuous 
(hidden) values; it is in the interaction with a measuring device, as a Stem-Gerlach 
apparatus, for instance, that the discretization of the measured spin component appears 
(in such a way that the existence of ensembles that are dispersion-free for more than one 
spin component is forbidden). The point is that, in order to obtain an ‘impossibility’ proof 
like BKS’s, one must accept some premises which not all HV theories satisfy; Bohm’s HV 
theory is compatible with orthodox QM but does not satisfy either assumptions’(a) or (c) [6] 
and therefore is not affected by BKS’s theorem. 

3. A BKS-like theorem for a spin-1 particle 

The BKS theorem states that the premises considered in section 2 are inconsistent. The usual 
way of demonstrating this inconsistency is by explicitly constructing a set of observables 
in such a way that any assignation of HV values according to such premises becomes 
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impossible. This is what we will call a ‘non-probabilistic’ state-independent proof of the 
BKS theorem. Examples of this kind are the original proof by Krxhen and Specker [Z] 
(recently discussed and simplified in [SI) and those obtained from impossibility proofs of 
local HV theories [9-131 which also admit a reading as BKS proofs [14,15]. However, 
some authors, invoking parts of some of the ‘non-probabilistic’ proofs, have constructed 
‘probabilistic’ arguments which point out discrepancies between definite predictions of HV 
theories and probabilistic predictions of QM. This possibility was first suggested by Stairs 
[16] (considering an eight-direction lemma in Kochen-Specker’s original proof [2]), and 
has been more expliciffy developed by Clifion [3] (who used a 13-direction argument in 
Bell’s proof [ l ]  as well as KochenSpecker’s same eight-direction lemma). In the following 
paragraphs we present a different construction with 14 directions and stronger discrepancies. 

Consider a single spin-1 particle, and let S, be the spin component in a direction a; 
according to (cl), u(S:) E [O, hz). Let us suppose that b and c are two mutually orthogonal 
directions both orthogonal to a, and let b‘ and d be another two. According to (a), (b) and 
(c2). 

since, according to (cZ), Hv values u(S,?J along three orthogonal directions satisfy the same 
relation as the square of spin components, 5; + 5; + 5: = 2k2; according to @), different 
pairs of orthogonal duections b, c can have simultaneously well-defined values (although 
the observables Si  and S: cannot be measured joinffy with S; and S;); and according 
to (a), the HV value in the direction orthogonal to both, U ( @ ,  is the same whatever the 
election of b, c. 

Theorem. If U($) = 0, and 

Y < e G n - Y Y: = ar~tan[4(3-~/~)] w 60~19’21Y‘ (6) 

any HV theory satisfying conditions (a), (b), (cl) and (c2) predicts with certainty that 
= h2, where Ss stands for a spin component in any direction that forms an angle 0 

with the z axis. 

For the sake of simplicity, from now on, u(n) will represent the value U($), and ‘I’ 
the constraint (5). which establishes that one of the Hv values for three mutually orthogonal 
directions must be zero and the other two values must be h2. 

Proof. By reduczio ad absurdum. Let n = (O,O, 1). n’ = (sine, 0, cos@), e E (0, n) and 
let us assume that u ( n )  and u(n’) are both zero. If u(0, 0,l) = 0, then (5) implies that the 
value in any direction orthogonal to n must be h2t; specifically, 

t These definite HV values for an infinite set of non-compatible observables do not contradict QM predictions: 
According to QM, in the eigenstate of S, with zero eigenvalue, MY S i  wilh b in the z = 0 plane, $mumred 
will give a result h2 with certainly. even if two such observables S i ,  S: are not jointly measurable except when 
b L c This is a kind of QM counterfactual definiteness (another more familiar example is the singlet state of two 
spin-; pdcles :  the observable S i )  + S:), ifmensured. will give a zem result Vn). 
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where we shall choose 91 # (DZ # M # nn/2 (with n integer). 
Also from (5) 

(8) 
I u(sine,o,cose) = O+U(-1,Cot9k, tan@) = f i 2  k = I, 2. 

(The directions on the right-hand side of (S), as well as in subsequent equations, have 
not been normalized, as this is irrelevant to the argument and would only complicate the 
expression.) The directions that appear on the lower right-hand side in (7) and on the right- 
hand side in (8) are mutually orthogonal; therefore the value in a direction orthogonal to 
both must be zero, 

u(cosyk, sinpk, 0) = h2 I ~ u ( s i n ~ ~ , - c o s p ~ , c o t ~ c o s e c ~ k )  = O  k =  1,2. (9) 
u ( - ~ , c o t ( ~ ~ , t a n e )  = f i 2  1 

According to (9, the value in any direction orthogonal to any of the two on the right-hand 
side in (9) must be h2; in particular, 

v(sinqpt. -cosq~.c0tecosecql) = 0 i u ( 0 . c o t e , s i n 9 ~ c o s q ~ )  = f i z  (10) 
and 

u(sin(o2, -cos@, cote cosecpz) = O i  U(- sin@, COS(03, tan0 sinyzcos(@ - a)) = h2. 

The direction that appears on the right-hand side in (IO) is orthogonal to (1,0,0) which has 
value h2 in (7), so 

(11) 

& U ,  - sinypl cosql,COte) = 0. (12) 
u ( l , O , O )  = f i z  

v(o,cote, sin91 cosyl) =h2 

Analogously, as the direction that appears on the right-hand side in (11) is orthogonal to 
(cos 93, sin e, 0) which have value hZ in (7), 

1 

(13) 

1 u(cos@,sinm,O) =E' 

U(- sin m, cos @, tan0 sin y~ cos((9 - @)) = h2 

&u(sin(o-~, -ccos(~j,cotecosecp2sec(p2 -@)) =o. 
The directions on the right-hand side in (12) and (13) are mutually orthogonal if 

- sin(29l)sinrp2cos@cos((q--) =zcotze. (14) 
The left-hand side of (14) is bounded between -31/5/8(91 = n/4, q z  = n/3, M = n/6) 
and 31/5/8, so that in order for directions at the right in (12) and (13) to be orthogonal, the 
following requirement must be fulfilled: 

a r c t a n [ 4 ( ~ ~ / ~ ) ]  < e < ar~tan[-4(3-~/~)]. (15) 

In short: if we choose 8, y1, (9 and ~3 satisfying (14), the two directions on the right-hand 
side in (12) and (13) are orthogonal and the corresponding HV values are both zero. But, 
according to (5), the HV values for two orthogonal directions cannot both be zero. So 
we have reached a contradiction; the only way of avoiding it is for the initial hypothesis, 

0 

In this proof, the interval y < 0 < r - y for which v(S:) = 0 + v ( S j )  = fi2 has 
reached y = 60"19'20" assuming definite HV values v ( n )  for observables S i  along 14 
directions (against y % 70"31'44" with 8 directions, and y = 6396'6'' with 13 directions). 

v(n)  = u(n') = 0, to be false. 
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4. Experimental test 

If what we are looking for is an experimental test which will discriminate between QM and 
an Hv theory built up around premises (a), @), (cl) and (c2) leading to the non-probabilistic 
BKS theorem, we need to clarify the relationship between the ‘HV values’ and the outcomes 
of measurements. Usually the following property is assumed. 

(d) Faithful measurement: If an individual system has a hidden value u(A) for an 
observable A, a measurement of A will give the result u(A). 

This assumption is not necessary for a proof of the non-probabilistic BKs theorem and 
is experimentally unverifiable (if there is a dispersion in the results, only the frequencies of 
predictions and results can be compared). Moreover, it is not satisfied by all HV theories 
(Bohm’s theory [5-71 is again a counterexample). Fortunately, for an experimental test of 
our family of HV theories, a weaker assumption will do: 

(d‘) If an HV theory assigns the same value u(A) to any individual system of an ensemble, 
a measurement of A in any of the systems of the ensemble will give the result u(A). 

Unlike (d), assumption (d’) is experimentally verifiable. Note that (d’) and the corollary 
of (cl) assume the equality of HV values and QM results only in cases when both are 
dispersion-& in some ensemble of systems; this is hue even in Bohm’s theory. 

Let us now analyse the different results predicted by HV theories and QM in the case 
considered in section 3. If we prepare an ensemble of spin-1 particles in a quantum 
dispersion-free state with zero value for S,, from premise (cl) all individual systems of 
the ensemble verify 

u(s;) = s; = 0. (16) 

For any individual physical system with this Hv value, as we have shown, any Hv theory 
satisfying (a), (b), (c) predicts with certainty 

UCSS’) = h2 (17) 

if the angle e‘verifies (6). Therefore, according to (d’), the Hv prediction is that the result 
of a measurement of S i  in any member of the ensemble will be h2. On the other hand, QM 
predicts that, if we measure the observable SS on the ensemble of individual systems in the 
s, = 0 state, the probability of getting the result se = O(=, s i  = 0) is 

(18) 

Therefore both theories predict conflicting results for the same experiment. The largest 

2 
&O,(S.4 = 0) = I(sp = Ols, = 0)12 =cos e. 

discrepancy with the HV prediction is obtained when 

0 = y:= ar~tan[4(3”/~)1 = 60”19‘20” =+ PI.,=o,(s, = 0) = 1 + - M a. 1 (19) ( AY1 
That is to say: QM predicts that almost one out of four times the result will be sy = 0, 
an outcome which is incompatible with the HV value U($) = h2 plus assumption (d’). 
(The probability for a contradiction between QM and HV predictions reaches 1/5 with 13 
directions, and 119 with 8 directions, as [17] and 1181 correctly remark.) 
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The preparations and measures involved in our discussion can be made by means of 
traditional Stern-Gerlach devices, instead of with more complicated measures of quadrupolar 
moments, as in [19]. The explicit angular dependence of the QM prediction, (18), should 
facilitate the discrimination between signal and noise in a real experiment. 

The simple experiment described above would (presumably!) allow us to confirm the 
quantum prediction, and therefore to experimentally exclude the existence of any HV theory 
satisfying conditions (a), (b), (cl), (c2) and (d’). In the search for HV alternatives to QM, at 
least one of these premises should be abandoned. __ 
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